Kategorien
Atommüll Endlager Purex Strahlung Wiederaufbereitung

Endlager auf französisch


Endlager auf französisch

Im Gegensatz zu Deutschland, geht der Bau eines Endlagers in Frankreich zielstrebig voran: Bei uns, endloses Geschwafel von ausgesuchten Laien, dort konsequente Forschung und Entwicklung.

Die Rolle der Öffentlichkeit

Im Jahr 1991 verabschiedete das französische Parlament den sog. Bataille Act, in dem die Forderung nach einer langfristigen und sicheren Lösung für radioaktive Abfälle festgeschrieben wurde. Dabei sollten zukünftige Generationen nicht durch das heutige Vorgehen belastet werden.

Im ersten Schritt des Verfahrens wurden unterschiedliche Wege untersucht. Für hochaktiven und mittelaktiven Abfall wurde sowohl eine oberirdische Lagerung in Gebäuden als auch eine geologische Tiefenlagerung als machbar ermittelt. Nach Abschluss dieser Phase entschied man sich für eine unterirdische Lagerung, da nur bei ihr kommende Generationen von Lasten befreit sind.

Die nächste Phase erstreckte sich auf die Suche eines geeigneten Standorts in Frankreich. Unter den in Frage kommenden, entschied man sich für eine Einlagerung in die Tonschichten von Bure im Departement Haute-Marne und Meuse. Das Parlament beschloß im Jahr 2006 die Einrichtung eines geologischen Tiefenlabors (Bergwerk) zur endgültigen Abklärung der Eignung. Die endgültige Entscheidung durch das Parlament ob an diesem Standort das Endlager errichtet wird, ist für 2018 vorgesehen.

Wichtig an der Vorgehensweise ist die Aufteilung in Etappen. Für jede Phase gab es einen klar vorgegebenen Auftrag, der im Parlament diskutiert und beschlossen wurde. Voraus gingen öffentliche Anhörungen, Forschungsberichte und Kritik durch Umweltschutzorganisationen etc. Für die Untersuchungen am Standort Bure wurde eine unabhängige Organisation — die CLIS — geschaffen, die für die Vermittlung zwischen Öffentlichkeit und zuständigen Behörden zuständig ist. Sie wird hälftig aus Steuergeldern und durch Umlagen der „Müllerzeuger“ finanziert. Sie hat eigene Räume, feste Mitarbeiter und eine Bibliothek vor Ort, die für jedermann frei zugänglich sind. Mitglieder sind fast hundert Vertreter aus den betroffenen Gemeinden: Bürgermeister, Behörden, Feuerwehr, Gesundheitseinrichtungen, Gewerkschaftsvertreter etc. Zur Zeit knapp 100 Mitglieder. Sie versammeln sich mindestens vier mal pro Jahr, um sich auszutauschen. Darüberhinaus kann jeder Bürger sich an die CLIS wenden. Diese Versammlungen sind öffentlich und von jedem übers Internet mitzuverfolgen. Alle Behörden sind gegenüber der CLIS auskunftspflichtig. Zu den Anhörungen werden regelmäßig externe Fachleute eingeladen. Diese Transparenz hat maßgeblich zu der Gelassenheit in der örtlichen Bevölkerung beigetragen. Demonstrationen und gewalttätige Auseinandersetzungen — wie wir sie aus Wackersdorf und Gorleben kennen — sind bisher völlig ausgeblieben. Hier könnte Deutschland eine Menge von Frankreich lernen. Momentan wird die Quote auf etwa 20% Befürworter, 20% Gegner und einer Mehrheit von noch Unentschlossenen bzw. Gleichgültigen eingeschätzt. Jedenfalls lange nicht so aufgeputscht, wie in Gorleben. Widerstand wird nur von außen in die Gemeinden hereingetragen.

Das unterirdische Versuchsbergwerk und die oberirdischen Labore sind nach Voranmeldung zu besichtigen. Wer will, kann sich also ein eigenes Bild vor Ort machen und die entwickelten Gebinde, Transport-Roboter, Abbaumaschinen etc. im Original besichtigen.

Das Versuchslabor

Es wurden zwei Bergwerksschächte bis in die 500 Meter tiefe und etwa 150 m dicke Tonstein-Schicht abgeteuft. Dort unten, werden verschiedenste Gänge und Einrichtungen erbaut, die zur Erforschung der geologischen Verhältnisse und der Einlagerungsverfahren und Gerätschaften dienen. Es wird mit Originalgebinden — allerdings ohne Atommüll — gearbeitet. Zur Simulation werden die Gebinde teilweise sogar beheizt. Für jede Methode werden mindestens zwei Alternativen gleichzeitig untersucht. Ziel ist bei allem, Entscheidungen möglichst lange offen zu halten, um Sackgassen oder notwendige „faule Kompromisse“ zu verhindern. Bis zur endgültigen Entscheidung, ob hier das Endlager errichtet wird, wird man über mehr als zehn Jahre praktische Erfahrungen verfügen.

Ein Tiefenlager ist kein Bergwerk

Zwischen einem Bergwerk (Kohle, Salz etc.) und einem geologischen Tiefenlager besteht ein deutlicher Unterschied: Ein Bergwerk folgt den Kohlenflözen oder Mineraladern. Es orientiert sich nicht an den Erfordernissen von Fahrzeugen und Robotern etc. Nach dem Abbau können die Hohlräume ruhig einstürzen. Ein Endlager für Atommüll ähnelt jedoch eher einem System aus Straßentunneln. In diesem Fall besitzen die Tunnel einen Durchmesser zwischen sechs und acht Metern, bei einer Wandstärke von gut 30 cm Stahlbeton. Sie sollen mindestens 150 Jahre stabil bestehen bleiben. Das Lager ist für stärkste Erdbeben ausgelegt.

Ausgehend von diesen Tunneln, werden beidseitig, horizontal etwa 90 m lange Bohrungen mit rund 75 cm Durchmesser hergestellt, in die später die Gebinde mit hochaktivem Abfall eingeschoben werden. Um auch hier die Rückholbarkeit für mindestens 100 Jahre zu gewährleisten, werden diese Bohrungen sofort mit Stahlrohren ausgekleidet. Man kann sich einen solchen Abschnitt wie ein Stück Pipeline für Gas oder Öl vorstellen. Es gelten hier ganz ähnliche Qualitätsanforderungen. Mit einer „Müllkippe“ für Fässer — wie z. B. in der Asse — hat das alles nichts zu tun. Vielleicht liegt in diesem Missverständnis ein wesentlicher Grund für die breite Ablehnung eines Endlagers in der deutschen Öffentlichkeit?

Für die mittelaktiven Abfälle werden Kammern — oder sollte man vielleicht besser unterirdische Betonbunker sagen — gebaut, in die die Blöcke mit radioaktiven Abfällen gestapelt werden. Auch diese Abfälle müssen für mindestens 100 Jahre rückholbar sein. Das ganze ähnelt den „Zwischenlagern“, wie man sie bereits heute an der Oberfläche betreibt. Nur eben 500 m unter der Erde, in einer über 100 m dicken Tonschicht.

Rückholbarkeit

Die Franzosen gehen Schritt für Schritt vor. Jeder Schritt muß umkehrbar sein. So soll das Endlager z. B. mindestens 5 Jahre im Versuchsbetrieb ohne radioaktive Abfälle laufen. Erst wenn in der Praxis gezeigt wurde, daß alle technischen Einrichtungen so funktionieren, wie auf dem Reißbrett erdacht, kann mit der tatsächlichen Einlagerung von radioaktiven Abfällen begonnen werden. Nach heutigem Kenntnisstand erst in der zweiten Hälfte dieses Jahrhunderts.

In diesem Sinne, ist die geforderte Rückholbarkeit des Atommülls für mindestens 100 Jahre zu verstehen. Sind doch „Rückholbarkeit“ und „Endlager“ zwei gegensätzliche Forderungen. Weiterhin steht die endgültige, sichere und wartungsfreie Lagerung im Vordergrund. Vor der endgültigen Versiegelung führt man eine Beobachtungsphase über 100 Jahre ein, um sicher zu gehen, weder etwas übersehen, noch etwas falsch gemacht zu haben. Läuft die Sache nicht wie geplant, kann man anhalten und sogar einen Schritt zurückgehen, um eine neue Richtung einzuschlagen.

Besonders wichtig bei technischen Projekten, die sich über so lange Zeiträume hinziehen, ist die Flexibilität. Keiner hat vor 100 Jahren den heutigen Stand der Robotertechnik oder das Niveau im Tunnelbau vorhersehen können. Die Kerntechnik gab es noch nicht einmal. Vielleicht will man in 200 Jahren den „Atommüll“ gar nicht mehr verbuddeln, sondern als Rohstoff nutzen? Auch das gehört zur viel bemühten „Nachhaltigkeit“: Zukünftigen Generationen Entscheidungen offen zu lassen und (einfach) möglich zu machen.

Hochaktiver Abfall

Der HLW (High-Level Waste) besteht hauptsächlich aus den Spaltprodukten. Sie werden noch in der Wiederaufbereitungsanlage in geschmolzenem Glas gelöst und in Kannen aus rostfreiem Stahl abgefüllt. Eine solche Kanne ist ein Zylinder mit einem Durchmesser von 43 cm und einer Höhe von 130 cm. In ihm befinden sich ungefähr 400 kg Glas und 70 kg Abfall. Jede volle Kanne wiegt somit etwa eine halbe Tonne. Es sind die gleichen Kannen, die auch im Zwischenlager Gorleben auf ihr Schicksal warten. Ein Kernkraftwerk vom Typ Emsland (geplant noch bis 2022 am Netz) hinterläßt rund 20 solcher Kannen pro Jahr — wenn denn die abgebrannten Brennelemente aufbereitet werden dürften.

In Frankreich lagern diese Kannen in speziellen Bunkern auf dem Gelände der Wiederaufbereitungsanlage. Dort können sie solange abkühlen, bis ihre Oberflächentemperatur auch nach der Endlagerung maximal 90 °C beträgt. Zum Transport werden sie in spezielle Transportbehälter verpackt, die die Strahlung auf maximal 0,1 mSv/h begrenzen. Außerdem schützen sie die Kannen auch bei schwersten Unglücken. Sie sollen mit Sonderzügen zum Endlager nach Bure gefahren werden.

Im Eingangsbereich werden die Kannen ferngesteuert ausgeladen und auf ihren bestimmungsgemäßen Zustand und Inhalt überprüft. Für die Endlagerung werden sie in einen Zylinder verpackt. Dieser Zylinder dient dem Schutz bei der Einführung in die Endlager-Pipelines. Außerdem haben diese Zylinder spezielle Anschlüsse, die es den Beschickungsmaschinen erlauben, sie sicher zu halten und zu manövrieren. Außen sind sie mit Kufen aus Keramik versehen, die auch eine „gewaltsame“ Rückholung aus einem verbogenen Rohr ermöglichen würde. Solche Situationen werden bereits heute mit „kalten“ Kannen ausgiebig getestet.

Für den Transport aus dem oberirdischen Bereich in das Endlager werden diese Einheiten zum Schutz gegen Beschädigung und für den Strahlenschutz noch in einen Transportbehälter verpackt. Erst die Lademaschine entnimmt sie und schiebt sie in eine Lager-Pipeline. Ist die Pipeline voll, wird sie abschließend gegenüber dem Zufahrtstunnel versiegelt. Ab diesem Moment können keine radioaktiven Stoffe mehr aus der Pipeline (25 mm Wandstärke hat das Stahlrohr) austreten, bzw. kein Wasser etc. in sie eindringen. Erst nach einer eventuellen Zerstörung müssen die Barrieren Ton und Deckgebirge wirksam werden.

Mittelaktiver Abfall

Neben dem HLW soll auch der ILW (Intermediate-Level long-lived Waste) endgelagert werden. Typische Vertreter sind die alten Brennstabhüllen oder Filterrückstände aus Kraftwerken und Wiederaufbereitung. Diese Abfälle werden verdichtet und ebenfalls in Kannen aus rostfreiem Stahl eingeschweißt. Da sie keine fühlbare Wärme entwickeln, könnten sie sofort endgelagert und dichter gepackt werden.

Nachdem sie überprüft sind, werden sie in rechteckige Betonblöcke (je vier Kannen) eingesetzt. Diese dienen dem Schutz vor mechanischen Belastungen und dem Strahlenschutz. Diese Betonblöcke werden in den dafür vorgesehenen Kammern dicht gestapelt. Dafür sollen ebenfalls „Straßentunnel aus Beton“ im Ton gebaut werden. Diese werden Abschnittsweise beladen und anschließend versiegelt.

Aufbau des Endlagers

Oberirdisch wird die Anlage in zwei örtlich getrennte Bereiche unterteilt: Den nuklearen und den bergbaulichen Teil. Der „Bergbau“ wird aus fünf Schachtanlagen mit allen notwenigen Einrichtungen und den Abraumhalden bestehen. Der nukleare Teil umfaßt alle Einrichtungen, die zum Verpacken, überwachen und zur Wartung und Weiterentwicklung nötig sind. Dieser Teil ist mit dem unterirdischen Endlager durch eine etwa fünf Kilometer lange Rampe verbunden. Alle radioaktiven Stoffe werden durch eine Schienenbahn in diesem schrägen Tunnel nach unten geschafft. Während des Betriebs sind unterirdisch der nukleare und der bergbauliche Teil voneinander isoliert. Dies dient dem Arbeits- und Umweltschutz. Der nukleare Teil wird einem Kontrollbereich in einem Kernkraftwerk entsprechen.

Wird das Endlager — wahrscheinlich erst in ein paar hundert Jahren — endgültig außer Betrieb genommen, werden alle unterirdischen Gänge sorgfältig wieder verfüllt und die oberirdischen Anlagen abgebrochen. Bis zu diesem Zeitpunkt, bietet die Anlage einige hundert Dauerarbeitsplätze.

Sicherheit

Bei dem französischen Weg, über eine Wiederaufbereitung der abgebrannten Brennstäbe das Uran und Plutonium abzuscheiden und nur die Spaltprodukte und minoren Aktinoide als Abfall zu „endlagern“, reduziert sich der Gefährdungszeitraum auf etwa 100 000 Jahre. Nach Ablauf dieses Zeitraumes sind fast alle radioaktiven Stoffe zerfallen und der „Atommüll“ hat nur noch das Gefährdungspotential von Natururan.

Gesetzlich ist der Nachweis vorgeschrieben, daß die maximale Strahlenbelastung in der Umgebung des Lagers für den gesamten Zeitraum auf 0,01 mSv begrenzt bleibt. Selbst bei allen denkbaren Störfällen muß die Belastung auf 0,25 mSv beschränkt bleiben.

Zum Verständnis eines Endlagers ist das Zusammenspiel von Zeitdauer und Konzentration wichtig. Das Glas müßte z. B. durch Grundwässer aufgelöst werden. Hierdurch findet eine Verdünnung statt. Je geringer die Konzentration der radioaktiven Stoffe in diesem Wasser ist, desto harmloser ist es. Im Normalfall hätte dieses Wasser noch Trinkwasserqualität (Auflösung und Auslaugung von Glas in Wasser geht nur sehr langsam vor sich). Jetzt müßte dieses Wasser und die radioaktiven Stoffe aber noch 500 m Deckgebirge durchwandern, bevor es in die Biosphäre gelangt. Dabei wird es aber nicht einfach befördert, sondern tauscht sich beständig mit den Bodenschichten aus. Auf dieser langen Reise schreitet jedoch der radioaktive Zerfall kontinuierlich fort. Was z. B. in einem Trinkwasserbrunnen ankommen kann, ist — insbesondere bei den ausgesucht idealen Bedingungen am Standort — nur noch verschwindend gering und damit harmlos. Viele Mineralwässer sind höher belastet und werden sogar als gesundheitsfördernd eingestuft.

Zusammenfassung

Frankreich verfolgt zielstrebig seine „Endlagerpolitik“. Sie ist durch folgende Punkte charakterisiert:

  • Abgebrannte Brennelemente werden wieder aufbereitet. Durch die Abtrennung von Uran und Plutonium verringert sich die Menge an hochaktivem Abfall beträchtlich. Das Endlager kann kleiner werden. Der erforderliche Zeitraum für einen sicheren Einschluß reduziert sich deutlich auf rund 100.000 Jahre.
  • Die übrig bleibenden Spaltprodukte und minoren Aktinoide werden verglast und in der Wiederaufbereitungsanlage zwischengelagert. Wegen des relativ kleinen Volumens kann die Zwischenlagerung beliebig lange erfolgen. Die abnehmende Radioaktivität vereinfacht den notwendigen Strahlenschutz bei Transport und Handhabung.
  • Von der Entstehung des ersten Mülls bis zur Inbetriebnahme des Endlagers sind (wahrscheinlich) 100 Jahre vergangen. Der Müll ist damit soweit abgeklungen, daß problemlos Temperaturen von 90 °C auch im Endlager eingehalten werden können. Dies entschärft die Anforderungen an das Wirtsgestein ganz beträchtlich. Auch hier gilt die Politik der kleinen Schritte: Ab 2025 soll maximal 5% eingelagert werden und mindestens für 50 Jahre beobachtet werden, bis die Freigabe für die restlichen 95% erfolgt.
  • Die Entwicklung der Technologie ist weit fortgeschritten. Dies ist auf das konsequente Vorgehen in kleinen, gut überschaubaren und klar definierten Schritten zurückzuführen. In jeder Phase wurden mehrere Alternativen untersucht.
  • Im Gegensatz zu Deutschland, wurde großer Wert auf Transparenz und Öffentlichkeitsarbeit gelegt. Alle wesentlichen Schritte werden im Parlament behandelt und entschieden. Dabei beschränkt sich die Politik auf Grundsatzfragen, wie z. B. die Entscheidung zwischen oberirdischen technischen Lagern oder geologischem Tiefenlager. Dies ist eine rein ethische Entscheidung nach dem Muster: Traut man mehr der Gesellschaft oder der Geologie und sie ist deshalb vom Parlament zu fällen.
  • Die Durchführung der Beschlüsse wird ausschließlich durch ausgewiesene Fachleute ausgeführt und beurteilt. Selbsternannte „Atomexperten“ können, wie alle anderen Laien auch, ihre Einwände über die Anhörungen einbringen.
  • Alle Forschungsergebnisse werden veröffentlicht und bewußt auch den internationalen Fachgremien zur Beurteilung zur Verfügung gestellt.
  • Frankreich hat sich ein enormes Fachwissen zur geologischen Endlagerung erarbeitet. Es hat sich damit bedeutende Exportchancen erschlossen, denn „Endlagerung“ ist eine weltweite Aufgabe.

Ausblick

Im nächsten Teil wird noch näher auf die Entstehung von Atommüll und die unterschiedlichen Behandlungsweisen und Klassifizierungen eingegangen.

Dieser Beitrag wurde zuerst am 09.10.2016 veröffentlicht.