Kategorien
Druckwasser Hualong (HPR-1000) Reaktormodelle Reaktortypen

Hualong FOAK


Beginn einer atemberaubenden Serie

Anfang September 2020 wurde der Reaktor Fuqing 5 mit 177 Brennelementen zum ersten mal beladen. Ein in mehrfacher Hinsicht bemerkenswertes Ereignis. Es ist der erste Reaktor der chinesischen Eigenentwicklung ≫Hualong One≪ — ein sogenannter „First Of A Kind“ (FOAK). Der Bau des allerersten Reaktors eines neuen Modells dauert zumeist sehr lange, da bei ihm noch viele Fehler gemacht werden, die zeitaufwendig behoben werden müssen. Abschreckendes Beispiel ist die Baustelle Olkiluoto in Finnland mit dem Baubeginn im Jahr 2004. Gänzlich anders die Situation bei Fuqing 5: Dort war der Baubeginn (erster nuklearer Beton) im Mai 2015. Rund 5 Jahre Bauzeit gegenüber 16 Jahren mit gigantischer Kostenexplosion. Deutlicher kann man die Leistungsfähigkeit der chinesischen kerntechnischen Industrie nicht darstellen. Doch damit noch nicht genug: Im Dezember 2015 war der Baubeginn für die Blöcke Fuqing 6 und Fangschenggang 3, im Dezember 2016 für Fangschenggang 4, im Oktober 2019 für Zhangzhou 1 und im September 2020 für Zhangzhou 2 und Taipingling 1. Um dem ganzen noch die Krone aufzusetzen, wurde parallel im August 2015 mit dem ersten Auslandsauftrag Karachi 2+3 in Pakistan begonnen. Man hat also gleichzeitig 9 Reaktoren eines neuen Typs in Arbeit. Da China auch noch andere Kernkraftwerke baut, kommt es seinem Ziel, in den nächsten Jahrzehnten durchschnittlich alle sechs Monate einen Kernreaktor in Betrieb zu nehmen, sehr nahe.

Die Geschichte des Hualong

Im Jahr 2012 wurde durch das zentrale Planungsbüro in Peking beschlossen, die Eigenentwicklungen ≫ACP1000≪ von China National Nuclear Corporation (CNNC) und ≫ACPR1000≪ von China General Nuclear (CGN) zu einem standardisierten Modell ≫Hualong One≪ zusammenzulegen. Es sollte ein Reaktor der dritten Generation entstehen, in dem auch ausdrücklich alle Erfahrungen des Unglücks in Fukushima berücksichtigt werden sollten. Da jeder Hersteller seine eigenen Zulieferketten hat, unterscheiden sich noch heute die Modelle geringfügig.

Ursprünglich sollten 2013 in Pakistan zwei ≫ACP1000≪ in der Nähe von Karachi gebaut werden. Dieses Vorhaben wurde 2015 in zwei ≫Hualong One≪ umgewandelt. Darüberhinaus befindet sich der ≫Hualong One≪ in der Variante Fuqing 5+6 in Großbritannien im Genehmigungsverfahren als Modell für das geplante Kernkraftwerk Bradwell. Allerdings ist es höchst fragwürdig, ob dieses Projekt noch politisch durchsetzbar ist. Nach den Ereignissen in Hongkong und um den Ausbau des Mobilfunknetzes durch Huawei ist die Stimmung in Großbritannien gekippt. China ist in einer Schlüsselfunktion wie der Stromversorgung nicht mehr erwünscht.

Die Lernkurve

Obwohl diese Serie von Hualog One weitestgehend parallel gebaut wird, kann man laufend Verbesserungen entdecken. Selbst an so simplen Bauteilen wie dem Containment. Es besteht aus Stahlringen (ca. 46m Durchmesser, etwa 7m hoch, Wandstärke 6 mm, mit einem Gewicht von 180 to), die auf einem separaten Platz auf der Baustelle aus vorgefertigten Segmenten zusammengeschweißt werden. Sie werden dann mit einem Schwerlastkran übereinander gestapelt und zu einem zylindrischen Containment montiert. Den oberen Abschluss bildet eine Kuppel, die ebenfalls vor Ort aus Segmenten zusammengeschweißt wird und mit einem Kran aufgesetzt wird. Auf diese Stahlkonstruktion wird nun die eigentliche Hülle aus Spannbeton aufbetoniert. Man erhält so ein gasdichtes und hochfestes Sandwich als Wand. Als Schutz gegen Flugzeugabstürze etc. wird diese Konstruktion noch einmal als äußere Hülle wiederholt. Zwischen den Wänden verbleibt ein Spalt, der später zur Überwachung im Unterdruck gehalten wird.

Vergleicht man nun die innere Kuppel von Fuqing 5 (Montage im Januar 2017) mit der von Fangschenggang 3 (Montage im Mai 2018), so stellt man fest, daß sich das Gewicht von 305 to auf 260 to verringert hat. Umfangreiche 3-D-Simulationen, eine Optimierung der Statik und die Verwendung besonders geformter Segmente haben zu diesem Fortschritt geführt. Materialeinsparungen sind praktisch auch immer Kosteneinsparungen.

Wie flexibel die Chinesen vorgehen, zeigt sich aber auch am Ablauf der Montage. Bisher hat man klassisch erst den Rohbau fertiggestellt und anschließend die Großkomponenten eingebracht. Dazu muß man die drei Dampferzeuger (Länge 21 m, 365 to) und das Druckgefäß waagerecht durch die Schleuse einbringen und innerhalb des Containment aufwendig aufrichten und mit dem Polarkran in Position bringen. Beim Kraftwerk Karachi hat man die Einbauten vor dem Aufsetzen der Kuppel eingebracht. Bei Fuqing 5 dauerte das Einbringen der Dampferzeuger und des Druckgefäßes rund 2,5 Monate. In Karachi reduzierte sich der Einbau auf rund 5 Stunden pro Dampferzeuger bzw. 3 Wochen für alle nuklearen Großkomponenten. Eine beträchtliche Zeit- und Kostenersparnis.

Die Rolle ausländischer Zulieferer

Klein, Schanzlin und Becker (KSB) aus Frankenthal war einst die Perle für Pumpen in der Kraftwerkstechnik. Der Ausstieg aus Kerntechnik und Kohle in Deutschland hat sie (noch) nicht aus dem Markt gedrängt, sondern lediglich ins Ausland vertrieben. So erhielt SEC-KSB den Auftrag für die sechs Hauptkühlmittelpumpen (10,000-Volt-Motor mit einer Antriebsleistung von 6600 kW, 110 to schwer, Leistung 24 500 Kubikmeter pro Stunde) für das Kraftwerk Zhangzhou. Ein Auftrag in dreistelliger Millionenhöhe. Dafür muß man in Deutschland eine ganze Menge Heizungspumpen verkaufen. SEC-KSB ist ein im Juni 2008 gegründetes Joint Venture zwischen Shanghai Electric (55%, wer da wohl das sagen hat?) und KSB (45%), welches für das komplette Geschäft mit kerntechnischen Komponenten in China verantwortlich ist. Ein typisches Schicksal eines deutschen Unternehmens der Spitzentechnologie: Entweder man macht den Laden in Öko-Deutschland sofort dicht oder man versucht sich ins Ausland zu verlagern.

Vielleicht verläuft ja das Schicksal von Rolls-Royce (R&R) etwas anders. R&R hat für das gleiche Kraftwerk ebenfalls einen dreistelligen Millionenauftrag eingeworben über die Lieferung der Neutronenfluss-Messeinrichtungen. Allerdings werden diese komplett in Grenoble Frankreich konstruiert, gefertigt und getestet…

Die Preise

Man kann den Chinesen nicht so richtig in die Karten schauen. Es handelt sich immer noch um eine Planwirtschaft mit ihren Eigenheiten bezüglich Kosten und Finanzierung. Man kann aber einen guten Eindruck über Geschäfte mit dem Ausland gewinnen. So hat sich schon 2016 der thailändische Energieversorger RATCH in das Kernkraftwerk Fangchenggang II eingekauft. Aus den Veröffentlichungen des Unternehmens kann man entnehmen, daß das Kraftwerk einen Wert von US$ 6 Milliarden, bei einer Leistung von 2 x 1180 MWel hat. Dies entspricht spezifischen Investitionskosten von 2542 US$/kW. Ganz ähnlich sind die Daten für das pakistanische Kraftwerk Karachi: CNNC gibt Pakistan einen Kredit über US$ 6,5 Milliarden. Es scheint, daß die Chinesen das gesamte Kernkraftwerk im engeren Sinne (2 x 1100 MWel) komplett vorfinanzieren. Die Projektkosten für das Kernkraftwerk werden von dem pakistanischen Prime Minister Nawaz Sharif mit US$ 9.59 Milliarden angegeben. Dies ergibt spezifische Kosten von 4359 US$/kW für das Projekt mit allen notwendigen Ausgaben (z. B. Hochspannungsleitungen und Infrastruktur).

Bauweise

Bei dem Hualong One oder auch als HPR-1000 bezeichnet, handelt es sich um einen Druckwasserreaktor mit drei Kreisläufen (jeweils Dampferzeuger, Hauptkühlmittelpumpe und Hauptkühlmittelleitung) und einer Nennleistung von 1180 MWel. Er ist für eine Betriebsdauer von (mindestens) 60 Jahren ausgelegt. Er besitzt ein doppelwandiges Containment, welches gegen Flugzeugabstürze etc. ausgelegt ist. Das Brennelementelager und die Gebäude für sicherheitstechnische Anlagen sind ebenfalls gegen Flugzeugabstürze etc. verbunkert. Die Schnellabschaltung bei Störfällen erfolgt vollautomatisch. Erst nach 30 Minuten sind menschliche Eingriffe nötig. Erst nach 72 Stunden sind Hilfsmaßnahmen von außen nötig (z. B. Nachfüllen von Wasser in die internen Becken). Jeder Reaktor ist nicht nur für die Grundlast, sondern auch für einen extremen Lastfolgebetrieb konstruiert.

Innerhalb des Containment — genauso geschützt gegen Einwirkungen von außen wie der Reaktor selbst — befindet sich ein großer Wassertank (IRWST), der Wasserverluste im Kreislauf (z. B. Rohrbruch im Primärkreis) ersetzen kann. Es ist also kein „Umschalten“ in andere Gebäudeteile notwendig. Diesem Tank kann auch Wasser für die „Beregnung“ des Sicherheitsbehälters entnommen werden. Durch den Regen kann der Druck und die Temperatur im Notfall reguliert werden. Es können auch Chemikalien hinzugesetzt werden, die etwaige freigesetzte radioaktive Stoffe auswaschen und binden können (Lehre aus Fukushima). Dies entlastet die Filteranlagen, wenn die Luft nach einem schweren Störfall über den Kamin abgegeben werden muß. Aus dem IRWST kann auch ausreichend Wasser bereit gestellt werden, um die Kaverne, in der das Reaktordruckgefäß steht, vollständig zu fluten. Damit ist das Austreten von Kernschmelze aus dem Reaktordruckgefäß ausgeschlossen. Die gesamte Nachzerfallswärme wird über passive Systeme mit Naturumlauf und Wärmeübertrager an die Umgebung abgegeben. Insofern handelt es sich beim Hualong One um einen echten Reaktor der sogenannten Generation III+.

Solange der Primärkreislauf intakt ist, aber die Wärmesenke (Kühlturm, Meerwassereinlauf, Pumpen etc.) total ausfallen sollte (Fukushima), kann die Wärme über die Dampferzeuger sicher im Naturumlauf abgeführt werden. Zum Nachfüllen von Wasserverlusten dienen jeweils 2 x 50% Motorpumpen und 2 x 50% Pumpen mit Dampfturbinen, die Wasser aus Tanks entnehmen. Es liegt also auch hier nicht nur Redundanz, sondern auch Diversität vor.

Für die Notstromversorgung sind pro Reaktor zwei Notstromdiesel in getrennten Gebäuden vorgesehen. Zusätzlich gibt es im Kraftwerk noch eine weitere Notstromversorgung über eine Gasturbinenanlage (Lehre aus Fukushima) und transportable Notstromaggregate. Zusätzlich gibt es Batterien für eine Versorgungszeit von 72 h (Lehre aus Fukushima). An diese Gleichstromversorgung sind alle Instrumente, Notbeleuchtung, EDV sowie die Ventile der passiven Sicherheitseinrichtungen angeschlossen.

Wie die probabilistischen Sicherheitsberechnungen ergeben, ist beim Hualong One mit einem Kernschaden (CDF) in höchstens einer Million Betriebsjahren zu rechnen. Mit einer Freisetzung großer Mengen radioaktiver Stoffe in die Umwelt (LRF) in höchstens 10 Millionen Betriebsjahren. Um gleich den üblichen Missverständnissen entgegenzutreten: Es handelt sich um Betriebsjahre und nicht Kalenderjahre. Gemeint ist damit, wenn 10 gleiche Reaktoren ein Kalenderjahr lang laufen, ergibt das 10 Betriebsjahre. Und ja, es handelt sich um Wahrscheinlichkeiten, ein Schaden könnte auch schon morgen eintreten. Absolute Sicherheit gibt es halt in der Natur nicht. Solche Zahlen dienen Fachleuten nur um unterschiedliche Risiken vergleichbar zu machen. Was aber ausschlaggebend ist, hier handelt es sich um Eintrittswahrscheinlichkeiten für Ereignisse — nicht um Opferzahlen. Spätestens nach Tschernobyl und Fukushima wissen wir doch, daß auch schwerste Unglücke in Kernkraftwerken zu wenig bis gar keinen Todesopfern führen. Ganz im Gegensatz z. B. zu einem Flugzeugabsturz. Der Kampfschrei der „Anti-Atomkraft-Bewegung“: Millionen-Tote, für-zehntausende-von-Jahren-unbewohnbar, war und ist einfach nur grottenschlechte Propaganda — wenngleich er gerade in Deutschland höchst erfolgreich war und ist.

Dieser Beitrag wurde zuerst am 12.09.2020 veröffentlicht.