Kategorien
Brennstoff HALEU HTR Reaktormodelle Reaktortypen Thorium THTR TRISO

Neuer Temperaturrekord für TRISO


Neuer Temperaturrekord für Brennstoffe gemeldet

Forscher am Idaho National Laboratory (INL) und beim Oak Ridge National Laboratory (ORNL) meldeten einen neuen Meilenstein bei der Entwicklung von Brennstoffen für einen Reaktor der sog. vierten Generation. Sie erreichten einen neuen Rekord von 1800 °C . „Ein sicherer und effizienterer Kernbrennstoff zeichnet sich am Horizont ab“ war die Meldung betitelt. Der weiterentwickelte TRISO-Brennstoff (tristructural-isotropic, Bilderstrecke hierzu: TRISO) hätte sich als noch robuster als gedacht erwiesen. Die Entwicklung dieses Brennstoffes ist Bestandteil einer Reaktorentwicklung für besonders hohe Betriebstemperaturen (Very High Temperature Reactor Technology Development Office). Es ist die Wiederaufnahme einer Entwicklungsschiene zur Nutzung von Kernenergie in der Chemie. Insbesondere zur Umwandlung von Kohle in umweltfreundlichere Produkte oder zur großtechnischen (chemischen) Wasserstoffgewinnung. Am konsequentesten und weitesten wurde diese Schiene einst in Deutschland (THTR) entwickelt. Mußte aber — wie so vieles andere — aus politischen Gründen aufgegeben werden. Inzwischen wurde auch die Entwicklung in Südafrika mangels finanzieller Möglichkeiten fast vollständig eingestellt. Nur das andere „Kohleland“ China, verfolgt noch mit merklichem Einsatz die Weiterentwicklung. Die USA — auch das Saudi Arabien der Kohle genannt — betreiben mit allen eine enge Kooperation, insbesondere auf dem Sektor der Brennstoffentwicklung.

Der heutige Stand, ist das Ergebnis von 11 Jahren Entwicklung am INL und ORNL. Wobei diese Forschung, schon auf den deutschen Ergebnissen aus den 1980er Jahren aufbauen konnte. Dies nur mal so am Rande, wie lang Entwicklungszeiträumen in der Kerntechnik dauern. Dabei handelt es sich hier nur um ein Teil — dem Brennelement — eines neuen, gasgekühlten Hochtemperaturreaktors. Alle Teile koppeln aber später im Betrieb gegenseitig aufeinander zurück. Erinnert sei nur, an das Einfahren der Steuerstäbe in den Kugelhaufenreaktor in Hamm-Üntrop, welches zu unerwartetem Verschleiß geführt hatte. Die hier beschriebenen TRISO-Elemente waren drei Jahre zur Bestrahlung in einem Testreaktor (im Advanced Test Reactor des INL). Ziel war ein Abbrand von etwa 20%. Dies entspricht etwa dem doppelten Wert, der damals in Deutschland verwendeten Brennelemente. Je höher der Abbrand ist, um so mehr Spaltprodukte sind in den Brennelementen vorhanden und um so höher war die Strahlenbelastung.

Nach der Bestrahlung wurden sie in einem Ofen auf die Testtemperatur erhitzt. Hauptzweck eines solchen Versuches ist, zu messen, wieviel Spaltprodukte, von welcher Sorte, „ausgeschwitzt“ werden und wie stark die anderen Eigenschaften (Festigkeit, Korrosion etc.) nachlassen. Aus solchen Versuchen kann man wertvolle Erkenntnisse für die Optimierung des Herstellungsprozesses ableiten. Die Meßergebnisse sind so positiv, daß man sogar Tests bei noch höheren Temperaturen erwägt. Wichtig für die Sicherheitstechnik ist, daß bereits die jetzigen Temperaturen etwa 200 Grad über den möglichen Höchsttemperaturen bei einem Störfall liegen.

Unterschiede zu konventionellen Brennelementen

Ein Brennelement enthält den Spaltstoff (Uran, Plutonium) und soll später die bei der Kernspaltung entstehenden Produkte möglichst gut festhalten. Das Brennelement muß gekühlt werden. Bei einem Leichtwasserreaktor ist das Kühlmittel auch das Arbeitsmedium (Dampfturbine). Bei einem klassischen Hochtemperaturreaktor, dient Helium als Wärmeübertrager zwischen den Brennelementen und dem eigentlichen Dampfkreislauf. Verwendet man Helium als Kühlmittel und wünscht trotzdem ein thermisches Neutronenspektrum, benötigt man noch einen zusätzlichen Moderator. Diese Funktion übernimmt der Kohlenstoff in den TRISO-Elementen.

Ein Brennelement eines Druck- oder Siedewasserreaktors besteht aus vielen einzelnen Brennstäben (üblich 14 x 14 und 17 x 17). Jeder Brennstab ist mit Tabletten (kleine Zylinder mit etwa 1 cm Durchmesser und Höhe) aus Uranoxid gefüllt. Die Hülle besteht aus einem beidseitig verschlossenen Rohr aus einer Zirkonlegierung. Uranoxid ist in Wasser praktisch unlöslich und hat einen hohen Schmelzpunkt von über 2800 °C. Dies erscheint sehr hoch, kann aber relativ schnell im Innern eines Brennstabs erreicht werden, da Uranoxid ein schlechter Wärmeleiter ist. Es kommt deshalb bei einem Verlust des Kühlwassers — wie in Harrisburg und Fukushima — partiell zur „Kernschmelze“. Infolgedessen reagiert die Brennstabhülle mit Wasserdampf bei hoher Temperatur und es bilden sich beträchtliche Mengen Wasserstoff, die in Verbindung mit Luft explodieren können. Die ursprünglich im Brennstab zurückgehaltenen Spaltprodukte können freigesetzt werden. Dabei ist zu beachten, daß viele Spaltprodukte bei den hohen Temperaturen gasförmig sind. Sie breiten sich deshalb zumindest im Reaktor aus. Dies führt zu einer erheblichen Strahlenbelastung, die menschliche Eingriffe für lange Zeit unmöglich macht. Man muß also längere Zeit warten, bis man mit den Aufräumarbeiten beginnen kann. Dies war das Problem in Harrisburg und ist heute das Problem in Fukushima.

Die Kombination Uranoxid, eingeschweißt in einer Hülle aus einer Zirkonlegierung (Zirkalloy) ist für den „normalen“ Betrieb eine sehr gute Lösung. Solche Brennelemente sind sogar für Jahrzehnte problemlos in Wasserbecken oder Spezialbehältern (trocken) lagerbar. Anders verhält es sich, wenn sie — insbesondere aus dem vollen Betrieb heraus — „trocken fallen“: Die Temperatur des Brennstabs steigt sofort über den gesamten Querschnitt an. Dies liegt an der relativ gleichmäßigen Verteilung der Spaltprodukte (Nachzerfallswärme) und der schlechten Wärmeleitung von Uranoxid. Der Brennstab fängt regelrecht an zu glühen und kann in seinem Inneren bereits aufschmelzen. Ohne den Phasenübergang von Wasser zu Dampf (Verdampfungsenthalpie) ist der gewaltige Wärmestrom (dafür reicht schon die Nachzerfallswärme kurz nach Abschaltung) nicht aus dem Brennstab zu transportieren. Mit anderen Worten: Ist der Brennstab erst einmal von Dampf umgeben, heizt er sich immer weiter auf. Nun setzen zwei fatale Prozesse ein: Infolge der steigenden Temperatur verliert das Brennelement seine mechanische Festigkeit und das Material der Brennstoffhülle „verbrennt“ im heißen Wasserdampf und produziert dadurch beträchtliche Mengen Wasserstoff. In diesem Moment wird ein Teil der vorher eingeschlossenen radioaktiven Stoffe zumindest im Reaktordruckgefäß (Unfall in Harrisburg) oder sogar im Sicherheitsbehälter (Fukushima) freigesetzt. Die produzierte Menge Wasserstoff kann so groß sein, daß sie ein ganzes Kraftwerk zerstört. Die Bilder von der Explosion in Fukushima sind hinlänglich bekannt. Ist das passiert, wird auch eine beträchtliche Menge radioaktiver Stoffe in die Umwelt freigesetzt.

Man kann also zusammenfassend sagen: Die Konstruktion der Brennelemente eines Leichtwasserreaktors funktioniert nur so lange, wie sie ständig von flüssigem Wasser umgeben sind. Sind sie nicht mehr vollständig von Wasser benetzt, nimmt die Katastrophe innerhalb von Sekunden ihren Lauf und endet — zumindest — im Totalschaden des Reaktors. Die Sicherheit steht und fällt mit der Aufrechterhaltung einer „Notkühlung“. Ein „trocken fallen“ muß sicher verhindert werden. Dabei spielt es keine Rolle, ob dies von außen ausgelöst wird (Tsunami), durch technisches Versagen im Kraftwerk (Rohrbruch) oder auch durch menschliches Versagen (Bedienungsfehler). In diesen Zusammenhängen liegt die Begründung für die passiven Sicherheitseinrichtungen bei Reaktoren der sog. Generation III+.

Das TRISO-Konzept

Beim Tristructural-isotropic (TRISO) Brennstoff geht man nicht von einer Tablette mit einem Durchmesser von etwa 1 cm als Baustein aus, sondern von winzigen Körnern, im Bereich von zehntel Millimetern. Diese Körnchen werden mit vier Schichten umhüllt und besitzen anschließend einen Durchmesser von etwa einem Millimeter. Die erste Schicht besteht aus porösem Kohlenstoff. Sie kann wie ein Schwamm die Ausdehnungen des Brennstoffkerns ausgleichen und kann aus ihm entwichene Spaltprodukte (Gase) aufnehmen. Diese Schicht ist von einer weiteren Schicht aus dichtem pyrolitischem Kohlenstoff (PyC) umgeben. Nun folgt eine Schutzschicht aus Siliziumkarbid (SiC). Dieses Material ist sehr hart und chemisch widerstandsfähig. Außen folgt eine weitere Schicht Kohlenstoff. Ein solches Korn „Verbundwerkstoff“ ist gleichzeitig nahezu unzerbrechlich und äußerst temperaturbeständig. In diesem „Tresor“ sind Spaltstoff und Spaltprodukte für Jahrzehnte fest eingeschlossen. In Deutschland plante man die „abgebrannten“ Kugeln in Edelstahlbehälter einzuschweißen und diese dann in ein Endlager zu bringen.

Aus diesen kleinen TRISO-Körnern kann man in einem weiteren Verfahrensschritt handhabbare Brennelemente „backen“. Bei einem Kugelhaufenreaktor sind das etwa Tennisball große Kugeln aus solchen TRISO-Körnern, die durch weiteren Kohlenstoff miteinander verbunden sind. Das erforderliche Verhältnis, ist durch die Neutronenphysik vorgegeben, da bei diesem Reaktortyp der Kohlenstoff auch die Funktion des Moderators übernehmen muß. Das durch den Kugelhaufen strömende Helium dient nur dem Wärmetransport. Da weder Zirkalloy, noch Wasser vorhanden ist, kann bei einem Störfall auch keine größere Menge Wasserstoff gebildet werden. Eine Explosion, wie im Kraftwerk Fukushima, wäre ausgeschlossen.

Wie diverse Versuche mit Kugelhaufenreaktoren eindrucksvoll gezeigt haben, sind sie „inhärent sicher“. In China hat man beispielsweise in einem öffentlichen Versuch dem Reaktor bei voller Leistung die Wärmesenke entzogen. Der Reaktor „ging von alleine aus“ und verharrte in einem stabilen Zustand. Die Kettenreaktion wurde durch den extrem negativen Temperaturkoeffizienten des Reaktorgraphit und dem Dopplereffekt des Brennstoffs augenblicklich unterbrochen. Durch die Nachzerfallswärme verharrt der Reaktor in diesem „überhitzten Zustand“ für viele Stunden, ohne jedoch eine für den Brennstoff kritische Temperatur zu überschreiten (Eine maximale Brennstofftemperatur von 1600 °C wurde nach drei Tagen erreicht). Der Reaktor blieb unbeschädigt und konnte nach dem Versuch wieder in Betrieb gesetzt werden. Diese Demonstration war wichtig, da dieser Reaktortyp unmittelbar in Raffinerien als Wärmequelle eingesetzt werden soll.

Ein Reaktor mit TRISO-Brennstoff und Helium als Kühlmittel macht hauptsächlich zur Erzeugung von Hochtemperatur-Prozeßwärme Sinn. Der gegenüber Leichtwasserreaktoren höhere Kapitalaufwand, wiegt die Brennstoffeinsparung durch höhere Wirkungsgrade bei der Stromerzeugung nicht auf. Bei kleinen Reaktoren dieses Typs, ist wegen des günstigen Verhältnisses von Volumen zu Oberfläche, eine „Notkühlung“ nicht notwendig. Die geringe Leistung (einige Hundert Megawatt) ist für die Anwendung „Prozeßwärme“ kein Nachteil, da der Bedarf von Hochtemperaturwärme an einem Standort ohnehin begrenzt ist. Wegen der relativ geringen Stückzahlen ist eine Wiederaufbereitung eher unwirtschaftlich. Die Stabilität der TRISO-Elemente kommt einer direkten „Endlagerung“ entgegen. Geschieht diese rückholbar, kann das irgendwann bei Bedarf geschehen.

Wie in Deutschland eindrucksvoll gezeigt wurde, eignet sich dieses Reaktorkonzept hervorragend, um Thorium nutzbar zu machen. Bei Kugelhaufen ist eine Anreicherung von 8 bis 10% Spaltmaterial und für das US-Konzept der Prismenanordnung von 14 bis 19% erforderlich. Es wäre sogar eine Verwendung von „teilaufgearbeitetem“ Leichtwasserbrennstoff möglich. Wegen des hohen Abbrandes wären hiermit etwa 70% des vorhandenen „Atommülls“ nutzbar. Ein Konzept, ähnlich dem koreanischen DUPIC-Verfahren (Nachnutzung in Schwerwasserreaktoren).

Dieser Beitrag wurde zuerst am 03.10.2013 veröffentlicht.