Kategorien
Rüstung Strahlung Wiese

Neutronendetektor


Neutronen als Spürhund

Neutronen sind schon seltsame Geschöpfe. Sie haben eine recht große Masse und keine elektrische Ladung. Sie sind deshalb in der Lage, viele Materialien nahezu ungehindert zu durchdringen. Ganz im Gegenteil zu den Protonen — ihren Gegenstücken im Kern — die eine positive Ladung besitzen. Sie haben zwar fast die gleiche Masse, werden aber wegen ihrer elektrischen Ladung stark beim Durchtritt durch Materie beeinflußt. Elektronen sind nur leicht und sind elektrisch negativ geladen. Wegen ihrer Ladung sind sie gut zu beschleunigen und auszurichten, dringen aber wegen ihrer geringen Masse nur wenig in Materialien ein. Sie werden deshalb z. B. zum Schweißen verwendet. Ein Partikelstrahl aus Neutronen würde den Stahl einfach durchdringen, ihn aber nicht zum Schmelzen bringen.

Da Neutronen keine Ladung besitzen, lassen sie sich nicht beschleunigen und in ihrer Flugrichtung beeinflussen. Sie lassen sich nur „mechanisch“ durch Zusammenstöße abbremsen. Sinnigerweise nur leicht, wenn sie mit schweren Kernen zusammenstoßen und sehr stark, wenn sie mit möglichst leichten Kernen zusammentreffen. Ihre „Reaktionsfreude“ hängt wiederum von ihrer Energie, d. h. ihrer Geschwindigkeit ab. Aufgrund dieses Zusammenhanges entsann der Mensch die Neutronenwaffe: Schnelle Neutronen sollten nahezu ungehindert Panzer durchdringen und erst mit den darin sitzenden Menschen (tödlich) reagieren.

Neutronen zur Analyse

Wenn Neutronen mit Atomkernen reagieren, entstehen immer irgendwelche charakteristischen γ-Quanten. Diese kann man recht einfach und sehr genau messen. Sprengstoffe bestehen wesentlich aus Wasserstoff, Stickstoff, Sauerstoff und Kohlenstoff in bestimmten chemischen Verbindungen. Wird ein solcher Stoff mit Neutronen beschossen, ergibt sich ein eindeutiger „Fingerabdruck“ in der Form des gemessenen γ-Spektrums. Sehr genau und sehr zuverlässig. Man kann nicht nur sagen, daß es Sprengstoff ist, sondern genau die Sorte angeben. Fehlalarme sind nahezu ausgeschlossen — wenn man genug Neutronen hat und über die erforderliche Meßtechnik verfügt.

In der Forschung — und teilweise der Forensik — ein seit Jahrzehnten erfolgreich angewendetes Verfahren. Man kann z. B. noch Gifte in Konzentrationen finden, bei denen chemische Analyseverfahren längst versagen. Solche Untersuchungen finden meist in kerntechnischen Einrichtungen statt, denn man benötigt neben der Meßtechnik Zeit und viele geeignete Neutronen — üblicherweise aus einem Forschungsreaktor.

Während des Irak-Krieges erlitten die Truppen die meisten Verluste durch „Eigenbau-Sprengfallen“ die unmittelbar neben den Straßen gelegt wurden. Wenn eine LKW-Kolonne vorbeifuhr, wurden sie (meist über Funk) ausgelöst. Schutz gegen solche Sprengfallen bieten nur gepanzerte Fahrzeuge. Die größten Verluste hatten deshalb nicht die kämpfenden Truppen an der Front, sondern die Versorgungseinheiten, die in Kolonnen durch endloses Feindesland fahren mußten. Nach amerikanischem Muster wurde deshalb richtig Geld in die Hand genommen, um dieses Problem zu lösen. Eine Lösung ist heute die Neutronenaktivierungsanalyse: Sie wirkt auch gegen versteckte und eingegrabene Sprengkörper aus schwer detektierbaren Materialien wie z. B. Kunststoff und Holz in einer vermüllten Umwelt. Für eine praktische Anwendung ist die sichere und schnelle Erkennung aus einem (langsam) fahrenden Fahrzeug und sicherer Entfernung von etlichen Metern erforderlich. In der Messdauer und der Entfernung liegt aber die Herausforderung.

Die „Neutronenkanone“

Will man größere Mengen Neutronen in einer möglichst kleinen Anlage erzeugen, bleibt praktisch nur die Kernfusion. Man schießt in einem Beschleuniger z. B. H2-Kerne auf H3-Kerne, wodurch ein Neutron mit hoher Energie freigesetzt wird. Das Problem solch einer Kernreaktion ist aber, daß die entstandenen Neutronen sich in einer beliebigen Richtung davonmachen. Ganz ähnlich wie die Lichtquanten einer Glühbirne. Es ist gleichmäßig hell im gesamten Raum um die Glühbirne. Diese großräumige Verteilung hat zur Folge, daß die Helligkeit sehr schnell mit dem Quadrat der Entfernung abnimmt. Will man eine bestimmte Stelle „ausleuchten“, muß man den Lichtstrahl darauf konzentrieren. Genau dies ist aber bei Neutronen nicht so einfach. Ein Spiegel funktioniert — anders als bei Licht — praktisch nicht. Eine Ablenkung durch Magnetfelder funktioniert wegen der nicht vorhandenen Ladung — anders als bei dem Elektronenstrahl einer Röhre — auch nicht. Eine solch einfache Neutronenquelle hätte nur eine sehr geringe Reichweite und wäre damit unbrauchbar.

Wenn es aber trotzdem gelänge den größten Teil der Neutronen gezielt auf ein Objekt zu lenken anstatt sie sinnlos im Raum zu verteilen, sehe die Sache anders aus. Je mehr Neutronen den Sprengkörper treffen, um so stärker sendet dieser seine charakteristischen γ-Quanten aus und die erforderliche Messdauer verkürzt sich, was dem Suchfahrzeug eine höhere Geschwindigkeit erlaubt. Neutronen sind zwar schwer auf Kurs zu bringen, dafür halten sie aber um so sturer ihren Kurs (große Masse und keine Ladung) und fliegen mit einer Geschwindigkeit von über 40 000 km/s davon.

Neutronen kann man praktisch nicht mehr beeinflussen. Dies ist ein Vorteil und Nachteil zugleich: Positiv ist, daß sie gegenüber allen anderen Partikeln eine außergewöhnliche Reichweite besitzen, da sie durch die Luftmoleküle nahezu unbeeinflußt hindurch fliegen. Neutronen sind gegenüber Atomen winzig klein, sodaß die Atmosphäre für sie ein nahezu leerer Raum ist. Die vielen Elektronen die um die Kerne schwirren, sind für sie kein Hindernis, da sie selbst keine elektrische Ladung besitzen und ihre Masse (Zusammenstoß) gegenüber den Elektronen riesig anmutet. Man muß sie nur einheitlich ausrichten um einen wirksamen Partikelstrahl zu erhalten.

Dies geht jedoch über einen Trick aus der Quantenphysik. Neutronen besitzen einen sog. Spin: Anschaulich gesagt, rotieren sie wie ein Kreisel um ihre Achse. Ein solcher Spin ist eine Erhaltungsgröße, d. h. der Spin eines Atomkerns überträgt sich nach dem Aussenden des Neutrons aus dem fusionierten Kern auf dieses Neutron. Normalerweise sind die Spins der Atomkerne nicht einheitlich. Deshalb schwirren die Neutronen normalerweise in alle Richtungen des Raumes davon. Wenn man jedoch vor der Fusion allen Atomkernen den gleichen Spin aufzwingt und sie wie eine Perlenkette ausrichtet, fliegen auch alle Neutronen wie ein Strahl von der Neutronenquelle davon. Dies alles gelingt inzwischen in so kleinen Gerätschaften, daß man sie einschließlich der nötigen Energieversorgung etc. auf einem Klein-LKW unterbringen kann. Diese „Neutronenkanonen“ erzeugen einen mehr als tausendfachen Neutronenfluß in eine Richtung.

Die Teilchenstrahlungswaffe

Momentan ist die „Neutronenkanone“ so klein und einsatzbereit, daß sie mit allem notwendigen Zubehör auf einen Kleinlastwagen zum Auffinden von Sprengfallen am Straßenrand in den Einsatz geht. Die Entwicklung wird aber massiv in die Richtungen: Kleiner, leistungsfähiger und billiger vorangetrieben. Der nächste Schritt ist ein Gerät, welches sich in ein Flugzeug einbauen läßt.

Vordringlich ist aber ein weiteres Einsatzfeld: Die Analyse von Kernwaffensprengköpfen. Eine einfache Maßnahme gegen die immer erfolgreichere Raketenabwehr ist das Ausstoßen von zusätzlichen Attrappen. Bei den bisherigen Raketenabwehrsystemen muß man sich noch auf das Erreichen des Scheitelpunktes einer ballistischen Rakete beschränken. Erst dann kann man erst sicher die Flugbahn berechnen und das Ziel voraussagen. Eine einfache Abwehrmaßnahme ist der gleichzeitige Ausstoß von mehreren Attrappen. Heute kann man noch nicht Sprengkopf und Attrappen unterscheiden. Man müßte also alle Objekte sicher abschießen, was schnell eine Raketenabwehr — zumindest wirtschaftlich — überfordern würde. Hier kommt wieder die „Neutronenkanone“ ins Spiel. Genau wie eine Sprengfalle könnte man den Sprengkopf sicher identifizieren.

An dieser Stelle drängt sich eine weitere Lösung auf. Ein Sprengkopf ist nicht einfach ein Klumpen aus Plutonium, sondern ist vollgestopft mit Elektronik (Zünder), Sprengstoff und sonstigen Hilfsmitteln. Wenn der Neutronenstrahl stark genug wäre, könnte er den Sprengkopf nicht nur identifizieren sondern sogar unbrauchbar machen.

Neutronen können gerade auf Halbleiter eine verheerende Wirkung haben. In moderne Phasenradargeräten (Raketen- und Flugabwehr) werden Halbleiter aus Galliumnitrid (GaN) verwendet. Ein Beschuß mit Neutronen kann diese Halbleiter schnell zerstören. Dies bezieht sich nicht nur auf das Rausschlagen von Elektronen, sondern Gallium hat auch recht große Einfangquerschnitte, was bedeutet, daß durch Kernumwandlung und Strahlung der Halbleiter dauerhaft zerstört wird.

Dieser Beitrag wurde zuerst am 10.08.2018 veröffentlicht.