Kategorien
Atommüll Brennstoff Plutonium Purex Strahlung Uran Wiederaufbereitung

Was ist eigentlich Atommüll?


Was ist eigentlich Atommüll?

Wenn man sich z.B. mit dem Thema Endlagerung beschäftigen will, ist es sinnvoll zu wissen, was „Atommüll“ eigentlich ist und wie er entsteht.

Alles entsteht im Reaktor

Im Reaktor eines Kernkraftwerks werden Atomkerne gespalten. Dies ist sein Sinn. Um Wärme-Leistungen von mehreren Gigawatt (MWth) in einem so kleinen Behälter zu erzeugen, sind gewaltige Flüsse von Neutronen notwendig. Die Neutronen entstehen überwiegend bei den Spaltungen und lösen weitere Spaltungen aus. Eine sich selbst erhaltende Kettenreaktion. Sie läuft solange weiter, bis zu viel „Spaltstoff“ verbraucht wurde. Der Brennstoff muß erneuert werden, d. h. die „abgebrannten Brennelemente“ (spent fuel) müssen durch frische ersetzt werden.

Auf ihrem Weg von einer Spaltung zu einem weiteren spaltbaren Kern, treffen die meisten Neutronen auch auf andere Atomkerne. Das sind all die anderen Materialien, aus denen der Reaktor besteht: Brennstabhüllen, Wasser, Regelstäbe, Einbauten im Reaktor, das Reaktorgefäß selbst etc. Nun kann es passieren, daß sie nicht nur mit einem Atomkern zusammenstoßen und wieder abprallen — gestreut werden — sondern von diesem dauerhaft eingefangen werden. Es entsteht ein neues chemischen Element oder ein Isotop. Man nennt das Aktivierung, da diese neu erschaffene Elemente radioaktiv sind.

Bewegen sich solche radioaktiven Stoffe durch das Kernkraftwerk, können sie Bauteile, Werkzeuge etc. kontaminieren. Kontaminierung und Aktivierung werden oft miteinander verwechselt: Kontaminierte Gegenstände bleiben unverändert, sie werden nur mit radioaktiven Stoffen verunreinigt. Sie können auch wieder gereinigt werde. Die Reinigung kann aber so aufwendig und damit kostenintensiv sein, daß es billiger ist, das Teil als „Atommüll“ zu deklarieren und einfach komplett wegzuwerfen.

Unterschiedliche Formen der Strahlung

Man unterscheidet γ-Strahlung, β-Strahlung (Elektronen) und α-Strahlung (Helium-Kern). Die beiden letzten können kaum Materie durchdringen. Für γ-Strahlung gilt: Eine Abschirmung aus möglichst dichtem Material (z. B. Blei) und schlichtweg Abstand einhalten. Jedenfalls reicht in einem Brennelemente-Lagerbecken die Wassertiefe als Abschirmung vollkommen aus. Es wäre gefahrlos möglich, in einem solchen Becken zu schwimmen.

Aus vorgenannten Gründen reicht meist ganz normale Schutzkleidung — bestehend aus Atemschutz, Schutzanzug, Handschuhen und Brille — beim Umgang mit Atommüll aus. Solange man radioaktive Stoffe nicht in seinen Körper aufnimmt, ist Atommüll relativ harmlos. Umgekehrt gilt, wenn man Atommüll sicher einschließt, ist der Umgang ohne Schutzkleidung möglich. Typisches Beispiel ist der Castor-Behälter: Seine dicken Stahlwände, spezielle Neutronenabsorber und sein gasdichter Verschluß machen auch die Handhabung stark strahlender Brennelemente gefahrlos möglich.

Die Dosis macht das Gift

Wie bei allen anderen Stoffen auch, ist die biologische Wirkung von Strahlung immer von der Dosis abhängig. Schon die Erfahrung mit dem Sonnenlicht macht diesen Zusammenhang deutlich: Ein wenig Sonne ist belebend (z. B. Bildung von Vitamin D), zu viel davon, erzeugt einen Sonnenbrand mit der Zerstörung von Hautschichten. Zuviel und häufige Strahlung kann sogar Hautkrebs erzeugen.

Der menschliche Körper verfügt über zahlreiche Reparaturmechanismen. Wäre das nicht so, hätte es überhaupt kein Leben auf der Erde geben können, denn die Strahlung war vor Millionen von Jahren noch wesentlich höher als heute. Jedenfalls ist die Vorstellung, schon ein einziges Plutonium-Atom könnte Krebs auslösen oder gar vererbbare Genveränderungen, ein Hirngespinst, das nur zur Erzeugung von Angst dienen soll. Wäre Radioaktivität tatsächlich so gefährlich, dürften wir nichts essen und trinken. Es gibt Mineralwässer, die enthalten mehr radioaktive Stoffe, als das Wasser in einem Brennelemente-Lagerbecken oder gar das Kondensat in einem Kernkraftwerk. Wir dürften keine Bananen oder Tomatenmark essen, denn die enthalten radioaktives Kalium. Unsere Bauern dürften vor allem keinen mineralischen Dünger aufs Land streuen, denn der enthält beträchtliche Mengen Uran, der ihre Felder im Laufe der Zeit zu „Atommüll-Deponien“ macht.

Es gibt heute umfangreiche Tabellen, die angeben, wieviel man von einem Stoff ohne Krankheitsrisiko zu sich nehmen kann. In diesen Tabellen ist noch ein weiterer Zusammenhang berücksichtigt, die sog. biologische Halbwertszeit. Es ist z. B. ein Unterschied, ob man radioaktives Wasser trinkt, welches ständig aus dem Körper ausgeschieden wird und durch frisches Wasser ersetzt wird oder radioaktives Strontium, welches gern in Knochen eingelagert wird und dort für Jahrzehnte verbleiben kann.

Konzentration oder Verdünnung

Beim Umgang mit „Atommüll“ spielen die Begriffe Verdünnung und Konzentration eine große Rolle. Im Sinne einer biologischen Wirksamkeit ist eine Verdünnung — wie bei jedem anderen Gift auch — eine bedeutende Schutzmaßnahme. Im Prinzip kann man jeden Stoff soweit verdünnen und damit unschädlich machen, daß er Trinkwasser oder Nahrungsmittelqualität besitzt. Deshalb besitzt z. B. jedes Kernkraftwerk einen hohen Abluftkamin. Radioaktive Abgase werden ordentlich verdünnt, bevor sie aus großer Höhe wieder auf den Boden gelangen oder von Menschen eingeatmet werden können.

Das Prinzip der Verdünnung, war bis in die 1960er Jahre der bestimmende Gedanke bei der Abgabe radioaktiver Stoffe ins Meer. Allerdings war von Anfang an klar, daß man durch die beständige Abgabe ins Meer, die Konzentration radioaktiver Stoffe dort erhöhen würde. Man vollzog deshalb eine 180-Grad-Wende: Von nun an war die Aufkonzentrierung das Mittel der Wahl. Bis aktuell in Fukushima. Dort dampft man radioaktives Wasser ein, welches nahezu Trinkwasserqualität hat, um auch geringste Mengen radioaktiver Stoffe vom Meer fern zu halten. Vom naturwissenschaftlichen Standpunkt aus betrachtet, schlicht Irrsinn. Aber zugegeben ein Irrsinn, mit dem sich trefflich Geld verdienen läßt und man am Ende auch noch behaupten kann, Kernenergie sei schlicht zu teuer.

Allerdings muß man an dieser Stelle festhalten, daß die Kerntechnik der erste Industriezweig ist, der versucht, Schadstoffe konsequent aus der Umwelt fern zu halten. Gleiches kann man von der Chemie oder den fossilen Energieverwendern (international) noch lange nicht behaupten.

Spent fuel

Nach einiger Zeit im Reaktor, ist jedes Brennelement „abgebrannt“. Es muß deshalb entfernt werden und durch ein neues ersetzt werden. Die frisch entnommenen Brennelemente strahlen so stark, daß man sie nur unter Wasser handhaben kann. Würde man sie nicht kühlen, könnten sie sogar schmelzen oder zumindest glühen. Dies hat zwei Ursachen:

  • Alle Spaltprodukte sind radioaktiv. Die Strahlung wandelt sich beim Kontakt mit Materie in Wärmeenergie um. Letztendlich wandeln sich die Spaltprodukte in stabile (nicht radioaktive) Kerne um. Dies geschieht jedoch meist nicht in einem Schritt, sondern in mehreren Schritten. Dabei können sogar chemisch unterschiedliche Elemente entstehen. Jede Stufe sendet die ihr eigene Strahlung mit ihrer charakteristischen Energie aus.
  • Der radioaktive Zerfall ist im Einzelfall rein zufällig und durch nichts zu beeinflussen. Betrachtet man aber eine sehr große Anzahl von Atomen eines bestimmten Stoffes, kann man sehr wohl eine sog. Zerfallskonstante ermitteln. Für den praktischen Gebrauch hat sich die sog. Halbwertszeit eingebürgert: Das ist die Zeitdauer, nach der genau die Hälfte der ursprünglichen Menge zerfallen ist. Für den Umgang mit Atommüll ergibt das eine wichtige Konsequenz: Stoffe, die eine geringe Halbwertszeit haben, sind schnell zerfallen. Wegen ihrer hohen Zerfallsrate senden sie aber auch sehr viel Strahlung pro Zeiteinheit aus.

Für abgebrannte Brennelemente ergibt sich daraus der übliche Zyklus: Erst werden sie in ein tiefes Becken mit Wasser gestellt. Das Wasser dient dabei zur Abschirmung der Strahlung und als Kühlmittel. Nach ein paar Jahren ist bereits so viel radioaktives Material zerfallen, daß man die Brennelemente in trockene Behälter (z. B. Castoren) umlagern kann. Es beginnt die beliebig ausdehnbare Phase der „Zwischenlagerung„.

Wiederaufbereitung

Ein abgebranntes — und damit nicht mehr nutzbares — Brennelement eines Leichtwasserreaktors, besteht nur zu rund 4% aus Spaltprodukten — quasi der nuklearen Asche — aber immer noch aus dem Uran und einigem neu gebildeten Plutonium. Uran und Plutonium können weiterhin zur Energieerzeugung genutzt werden.

Vom Standpunkt der Abfallbehandlung ergibt eine Wiederaufbereitung deshalb eine Verringerung des hochaktiven Abfalls (gemeint ist damit das abgebrannte Brennelement) um den Faktor Zwanzig, wenn man die Spaltprodukte abtrennt.

Man dreht aber damit auch gleichzeitig an der Stellschraube „Zeitdauer der Gefahr„. Der radioaktive Zerfall verläuft nach einer e-Funktion. D. h. zu Anfang nimmt die Menge stark ab, schleicht sich aber nur sehr langsam dem Grenzwert „alles-ist-weg“ an. In diesem Sinne tritt die Halbwertszeit wieder hervor. Plutonium-239 z. B., hat eine Halbwertszeit von über 24.000 Jahren. Man muß also mehr als 250.000 Jahre warten, bis nur noch ein Tausendstel der ursprünglichen Menge vorhanden wäre. Geht man von einem Anfangsgehalt von 1% Plutonium in den Brennstäben aus, sind das immer noch 10 Gramm pro Tonne. Nach den berühmten eine Million Jahren, beträgt die Konzentration etwa zwei Nanogramm pro Tonne. Auch nicht die Welt. Gleichwohl senkt das Abscheiden von Uran und Plutonium den Gefährdungszeitraum ganz beträchtlich.

Die Spaltprodukte sind im Wesentlichen nach maximal 300 Jahren zerfallen. Das „radioaktive Glas“ für die Endlagerung strahlt dann nur wenig mehr als ein gehaltvolles Uranerz wie z. B. Pechblende, aus dem Madame Curie einst das Radium chemisch extrahiert hat.

Eine Wiederaufbereitung erzeugt keinen zusätzlichen Atommüll, sondern ist ein rein chemisches Verfahren. Atommüll wird nur in Reaktoren „erzeugt“. Richtig ist allerdings, daß die Anlage und alle verwendeten Hilfsstoffe mit Spaltprodukten etc. verschmutzt werden. Heute wirft man solche kontaminierten Teile nicht mehr einfach weg, sondern reinigt bzw. verbrennt sie.

Die minoren Aktinoide

Heute werden die minoren Aktinoide (Neptunium, Americium, Curium, Berkelium, Californium) ebenfalls noch als Abfall betrachtet und in der Spaltproduktlösung belassen. Sie sind für die Strahlung nach 300 Jahren wesentlich verantwortlich. Dies ist eine Kostenfrage, da sie sich nur sehr aufwendig aus einer Spaltproduktlösung abtrennen lassen.

Sie bilden sich im Reaktor, weil nicht jedes eingefangene Neutron auch zu einer Spaltung führt. Je länger der Brennstoff im Reaktor verbleibt, um so weiter kann der Aufbau fortschreiten: aus Uran-235 wird Uran-236 und daraus Uran-237 gebildet bzw. aus Plutonium-239, Plutonium-240 usw.

Setzt man Uran und Plutonium aus der Wiederaufbereitung erneut in Leichtwasserreaktoren ein, verlängert sich quasi die Verweilzeit und die Menge der minoren Aktinoide im Abfall nimmt entsprechend zu. So geht man heute davon aus, Mischoxide aus Uran und Plutonium nur einmal in Leichtwasserreaktoren zu verwenden.

Grundlegend Abhilfe können hier nur Reaktoren mit schnellem Neutronenspektrum leisten. Will man ganz bewußt Plutonium „verbrennen“, um den ständig wachsenden Bestand auf der Welt zu verringern, bleibt nur der Einsatz solcher Reaktoren (z. B. der Typ PRISM) übrig. Reaktoren mit Wasser als Moderator sind viel zu gute „Brüter“. Handelsübliche Leichtwasserreaktoren haben eine sog. Konversionsrate von 0,6. Mit anderen Worten: Wenn man zehn Kerne spaltet, erzeugt man dabei automatisch sechs neue spaltbare Kerne — hauptsächlich durch Umwandlung von Uran-238 in Plutonium-239. Wenn man also reines Mischoxid einsetzt, hat man immer noch 0,6 x 0,6 = 36% der ursprünglichen Plutonium-Menge. Zum Überdruss auch noch in einer unangenehmeren Isotopenzusammensetzung. Keine besonders wirksame Methode, wenn man die Plutoniumvorräte auf der Welt drastisch verringern will. Völlig absurd in diesem Sinne, ist die Endlagerung kompletter Brennelemente, wie das in Deutschland geschehen soll. Bei dieser Methode sind die Anforderungen an ein Endlager am höchsten.

An dieser Stelle soll Thorium nicht unerwähnt bleiben. Thorium erzeugt den kurzlebigsten Abfall, da der Weg ausgehend von Uran-233 sehr viel länger als von Uran-238 ist und über das gut spaltbare Uran-235 führt. Ein Thorium-Reaktor erzeugt kaum minore Aktinoide, sondern hauptsächlich kurzlebige Spaltprodukte.

Der deutsche Sonderweg

Ursprünglich sind wir in Deutschland auch von einer Wiederaufbereitung der Brennelemente ausgegangen. Wir haben sogar rund 7.000 to in Frankreich und England aufbereiten lassen. Der hochaktive Müll — bestehend aus in Glas gelösten Spaltprodukten und minoren Aktinoiden — wird und wurde bereits nach Deutschland zurückgeliefert. Es werden etwa 3.600 solcher Kokillen in Deutschland in ungefähr 130 Castoren (28 Kokillen pro Castor ) „zwischengelagert“. Bis zum geplanten Ausstieg im Jahre 2022 werden noch etwa 10.000 to Brennelemente hinzugekommen sein.

Die Umstellung von Wiederaufbereitung zu direkter Endlagerung ist ein politischer Geniestreich Rot/Grüner-Ideologen gewesen: Deutschland hat nun das künstlich erschaffene Problem, ein — oder gar zwei — Endlager für zwei verschiedene hochaktive Abfallsorten zu erfinden. Beide von (wirtschaftlich) geringer Menge. Die verglasten Abfälle aus der Wiederaufbereitung sind ziemlich unempfindlich gegenüber Wasser (lediglich Auslaugung) und erfordern einen sicheren Einschluß für lediglich ca. 10.000 Jahre. Direkt eingelagerte Brennelemente müssen wegen ihres Gehalts an Spaltstoff (Uran und Plutonium) sicher vor Wassereinbrüchen geschützt sein, um einen Kritikalitätsunfall zu verhindern. Die schwedische Methode der Kupferbehälter mag ein Hinweis in diese Richtung sein. Teuerer geht nimmer, aber das ist ja auch Programm, damit die Behauptung der „teueren Kernenergie“ erfüllt werden kann. Zu allem Überdruss muß der sichere Einschluß auf diesem Weg für mindestens 200.000 Jahre erfolgen (Faktor 20!), um auf eine gleiche Gefährdung zu kommen. Aber auch das ist ja ausdrücklich gewollt, um die Angstindustrie kräftig anzuheizen.

Dieser Beitrag wurde zuerst am 14.10.2016 veröffentlicht.